1 INTRODUCTION 15
1.1 STUDY OBJECTIVES 15
1.2 DEFINITION 15
1.2.1 ARTIFICIAL PHOTOSYNTHESIS MARKET: INCLUSIONS AND EXCLUSIONS 16
1.3 MARKET SCOPE 16
1.3.1 MARKET SEGMENTATION 16
1.3.2 REGIONS COVERED 16
1.3.3 YEARS CONSIDERED 17
1.4 CURRENCY 17
1.5 LIMITATIONS 17
1.6 STAKEHOLDERS 18
2 RESEARCH METHODOLOGY 19
2.1 RESEARCH DATA 19
FIGURE 1 ARTIFICIAL PHOTOSYNTHESIS MARKET: RESEARCH DESIGN 19
2.2 MARKET BREAKDOWN AND DATA TRIANGULATION 20
FIGURE 2 DATA TRIANGULATION METHODOLOGY 20
2.2.1 SECONDARY DATA 21
2.2.1.1 Key data from secondary sources 21
2.2.2 PRIMARY DATA 21
2.2.2.1 Key data from primary sources 22
2.2.2.2 Breakdown of primaries 22
2.3 MARKET SIZE ESTIMATION 23
2.3.1 SUPPLY-SIDE ANALYSIS 23
2.3.1.1 Assumptions of supply-side analysis 23
2.3.1.2 Calculation of supply-side analysis 23
2.3.2 DEMAND-SIDE ANALYSIS 23
2.3.2.1 Assumptions for demand-side analysis 23
2.3.2.2 Limitation for demand-side analysis 24
2.3.2.3 Calculation of demand-side analysis 24
2.3.3 FORECAST 24
3 EXECUTIVE SUMMARY 25
TABLE 1 ARTIFICIAL PHOTOSYNTHESIS MARKET SNAPSHOT 25
FIGURE 3 ASIA PACIFIC HELD LARGEST SHARE OF ARTIFICIAL PHOTOSYNTHESIS MARKET IN 2021 26
FIGURE 4 DURING 2018–2022, MOST-USED STRATEGY BY COMPANIES IN ARTIFICIAL PHOTOSYNTHESIS MARKET WAS COLLABORATIONS 26
4 PREMIUM INSIGHTS 27
4.1 ATTRACTIVE OPPORTUNITIES IN ARTIFICIAL PHOTOSYNTHESIS MARKET 27
FIGURE 5 GROWING DEMAND FOR GREEN H2 AND ECO-FRIENDLY LIQUID FUELS TO BOOST MARKET GROWTH BETWEEN 2022 AND 2030 27
4.2 ARTIFICIAL PHOTOSYNTHESIS MARKET, BY REGION 28
FIGURE 6 ARTIFICIAL PHOTOSYNTHESIS MARKET IN NORTH AMERICA TO EXHIBIT HIGHEST CAGR DURING FORECAST PERIOD 28
5 MARKET OVERVIEW 29
5.1 INTRODUCTION 29
5.2 MARKET DYNAMICS 30
FIGURE 7 ARTIFICIAL PHOTOSYNTHESIS MARKET: DRIVERS, RESTRAINTS, OPPORTUNITIES, AND CHALLENGES 30
FIGURE 8 ENERGY-RELATED CO2 EMISSIONS, 1990–2019 (GT CO2) 31
5.3 PATENT ANALYSIS 33
TABLE 2 ARTIFICIAL PHOTOSYNTHESIS: INNOVATIONS AND PATENT REGISTRATIONS, JUNE 2017–FEBRUARY 2022 33
5.4 CASE STUDY ANALYSIS 34
5.4.1 US AIR FORCE PLANS FOR TRANSITION TO SUSTAINABLE AVIATION FUEL 34
5.4.1.1 Problem statement 34
5.4.1.2 Solution 34
5.4.2 PROCTOR AND GAMBLE’S OATH FOR CARBON NEUTRALITY BY 2040 34
5.4.2.1 Problem statement 34
5.4.2.2 Solution 34
5.5 KEY CONFERENCES AND EVENTS IN 2022 & 2023 34
TABLE 3 ARTIFICIAL PHOTOSYNTHESIS: DETAILED LIST OF CONFERENCES & EVENTS 34
5.6 GOVERNMENT AGENCIES AND OTHER ORGANIZATIONS 36
TABLE 4 GOVERNMENT AGENCIES AND OTHER ORGANIZATIONS 36
5.7 TECHNOLOGICAL ANALYSIS 37
5.8 TRENDS/DISRUPTIONS IMPACTING VARIOUS PROBABLE END USERS 38
FIGURE 9 REVENUE SHIFT FOR ARTIFICIAL PHOTOSYNTHESIS PROVIDERS 38
5.9 ECOSYSTEM 38
TABLE 5 ARTIFICIAL PHOTOSYNTHESIS MARKET: ECOSYSTEM 38
5.10 INDICATIVE PRICING ANALYSIS 39
TABLE 6 AVERAGE PRICE OF TITANIUM DIOXIDE, BY REGION, QUARTER ENDING DECEMBER 2021 39
6 ARTIFICIAL PHOTOSYNTHESIS MARKET, BY APPLICATION 40
6.1 INTRODUCTION 41
6.2 HYDROCARBONS 41
6.3 HYDROGEN 42
6.4 CHEMICALS 42
7 ARTIFICIAL PHOTOSYNTHESIS MARKET, BY TECHNOLOGY 43
7.1 INTRODUCTION 44
7.2 PHOTO-ELECTRO CATALYSIS 44
7.3 CO-ELECTROLYSIS 44
7.4 OTHERS 44
7.4.1 NANOTECHNOLOGY 44
7.4.2 HYBRID PROCESS 45
8 GEOGRAPHICAL ANALYSIS 46
8.1 INTRODUCTION 47
FIGURE 11 REGIONAL SNAPSHOT: ARTIFICIAL PHOTOSYNTHESIS MARKET IN NORTH AMERICA TO EXHIBIT HIGHEST CAGR DURING FORECAST PERIOD 47
FIGURE 12 ARTIFICIAL PHOTOSYNTHESIS MARKET SHARE (VALUE), BY REGION, 2021 47
TABLE 7 ARTIFICIAL PHOTOSYNTHESIS MARKET, BY REGION,
2020–2030 (USD THOUSAND) 48
8.2 NORTH AMERICA 48
FIGURE 13 NORTH AMERICA: REGIONAL SNAPSHOT 48
TABLE 8 ARTIFICIAL PHOTOSYNTHESIS PROJECTS IN NORTH AMERICA 49
8.2.1 BY COUNTRY 49
TABLE 9 ARTIFICIAL PHOTOSYNTHESIS MARKET IN NORTH AMERICA, BY COUNTRY, 2020–2030 (USD THOUSAND) 49
8.2.1.1 US 50
8.2.1.1.1 Growing demand for clean energy generation and emphasis on R&D of artificial photosynthesis technology 50
8.2.1.1.2 Macro factors 50
TABLE 10 US: HYDROGEN PRODUCTION CAPACITY AT REFINERIES, 2013–2017 (MILLION STANDARD CUBIC FEET PER DAY) 50
TABLE 11 US: GREENHOUSE GAS EMISSIONS, 2013–2017 (MILLION TONS OF CO2) 50
8.2.1.2 Canada 50
8.2.1.2.1 Increasing demand for green hydrogen is driving research activities for artificial photosynthesis 50
8.2.1.2.2 Macro factors 51
TABLE 12 CANADA: HYDROGEN PRODUCTION CAPACITY AT REFINERIES,
2013–2017 (MILLION STANDARD CUBIC FEET PER DAY) 51
TABLE 13 CANADA: GREENHOUSE GAS EMISSIONS, 2013–2017
(MILLION TONS OF CO2) 51
8.3 ASIA PACIFIC 51
FIGURE 14 ASIA PACIFIC: REGIONAL SNAPSHOT 52
TABLE 14 ARTIFICIAL PHOTOSYNTHESIS PROJECTS IN ASIA PACIFIC 52
8.3.1 BY COUNTRY 53
TABLE 15 ARTIFICIAL PHOTOSYNTHESIS MARKET IN ASIA PACIFIC, BY COUNTRY, 2020–2030 (USD THOUSAND) 53
8.3.1.1 China 53
8.3.1.1.1 Growing research and development activities for sustainable hydrogen generation 53
8.3.1.1.2 Macro factors 53
TABLE 16 CHINA: HYDROGEN PRODUCTION CAPACITY AT REFINERIES,
2013–2017 (THOUSAND STANDARD CUBIC FEET PER DAY) 53
TABLE 17 CHINA: GREENHOUSE GAS EMISSIONS, 2013–2017
(THOUSAND TONS OF CO2) 53
8.3.1.2 Japan 54
8.3.1.2.1 Increasing funding by national R&D agency for establishing large-scale hydrogen supply chain 54
8.3.1.2.2 Macro factors 54
TABLE 18 JAPAN: HYDROGEN PRODUCTION CAPACITY AT REFINERIES, 2013–2017 (THOUSAND STANDARD CUBIC FEET PER DAY) 54
TABLE 19 JAPAN: GREENHOUSE GAS EMISSIONS, 2013–2017
(THOUSAND TONS OF CO2) 54
8.3.1.3 South Korea 54
8.3.1.3.1 Surging investments by government supporting hydrogen generation technologies 54
8.3.1.3.2 Macro factors 55
TABLE 20 SOUTH KOREA: HYDROGEN PRODUCTION CAPACITY AT REFINERIES,
2013–2017 (THOUSAND STANDARD CUBIC FEET PER DAY) 55
8.3.1.4 India 55
8.3.1.4.1 Rising focus of Government of India to increase share of renewables 55
8.3.1.4.2 Macro factors 55
TABLE 21 INDIA: HYDROGEN PRODUCTION CAPACITY AT REFINERIES, 2013–2017 (THOUSAND STANDARD CUBIC FEET PER DAY) 55
TABLE 22 INDIA: GREENHOUSE GAS EMISSIONS, 2013–2017
(THOUSAND TONS OF CO2) 55
8.4 EUROPE 56
TABLE 23 ARTIFICIAL PHOTOSYNTHESIS PROJECTS IN EUROPE 56
8.4.1 BY COUNTRY 57
TABLE 24 ARTIFICIAL PHOTOSYNTHESIS MARKET IN EUROPE, BY COUNTRY,
2020–2030 (USD THOUSAND) 57
8.4.1.1 Germany 57
8.4.1.1.1 Growing investments in R&D activities for artificial photosynthesis 57
8.4.1.1.2 Macro factors 58
TABLE 25 GERMANY: HYDROGEN PRODUCTION CAPACITY AT REFINERIES,
2013–2017 (THOUSAND STANDARD CUBIC FEET PER DAY) 58
TABLE 26 GERMANY: GREENHOUSE GAS EMISSIONS, 2013–2017
(THOUSAND TONS OF CO2) 58
8.4.1.2 France 58
8.4.1.2.1 Surging use of renewable energy sources for sustainable development 58
8.4.1.2.2 Macro factors 58
TABLE 27 FRANCE: HYDROGEN PRODUCTION CAPACITIES AT REFINERIES,
2013–2017 (MILLION STANDARD CUBIC FEET PER DAY) 58
TABLE 28 FRANCE: GREENHOUSE GAS EMISSIONS, 2013–2017
(MILLION TONS OF CO2) 58
8.4.1.3 Italy 59
8.4.1.3.1 Surging adoption of green technologies to curb carbon emission 59
8.4.1.3.2 Macro factors 59
TABLE 29 ITALY: HYDROGEN PRODUCTION CAPACITY AT REFINERIES,
2013–2017 (THOUSAND STANDARD CUBIC FEET PER DAY) 59
8.4.1.4 Spain 59
8.4.1.4.1 Rising expenditure on R&D activities on artificial photosynthesis 59
8.4.1.4.2 Macro factors 60
TABLE 30 SPAIN: HYDROGEN PRODUCTION CAPACITY AT REFINERIES,
2013–2017 (THOUSAND STANDARD CUBIC FEET PER DAY) 60
8.4.1.5 Rest of Europe 60
8.4.1.5.1 Macro factors 60
TABLE 31 REST OF EUROPE: HYDROGEN PRODUCTION CAPACITY AT REFINERIES,
BY COUNTRY, 2013–2017 (THOUSAND STANDARD CUBIC FEET PER DAY) 60
8.5 REST OF THE WORLD 61
8.5.1 MACRO FACTORS 61
TABLE 32 REST OF WORLD: HYDROGEN PRODUCTION CAPACITY AT REFINERIES,
BY COUNTRY, 2013–2017 (THOUSAND STANDARD CUBIC FEET PER DAY) 61
9 COMPETITIVE LANDSCAPE 62
9.1 OVERVIEW 62
9.2 COMPETITIVE SCENARIO & TRENDS 62
TABLE 33 ARTIFICIAL PHOTOSYNTHESIS MARKET: DEALS, JANUARY 2016–
FEBRUARY 2022 62
TABLE 34 ARTIFICIAL PHOTOSYNTHESIS MARKET: OTHERS JANUARY 2016–
FEBRUARY 2022 63
9.3 RECENT MARKET DEVELOPMENTS 63
TABLE 35 KEY DEVELOPMENTS IN ARTIFICIAL PHOTOSYNTHESIS MARKET,
JANUARY 2012–FEBRUARY 2022 63
9.4 INDUSTRY CONCENTRATION 65
9.5 COMPANY EVALUATION QUADRANT 65
9.5.1 STAR 65
9.5.2 PERVASIVE 65
9.5.3 EMERGING LEADER 65
9.5.4 PARTICIPANT 66
FIGURE 16 COMPETITIVE LEADERSHIP MAPPING: ARTIFICIAL PHOTOSYNTHESIS MARKET, 2020 66
TABLE 36 ARTIFICIAL PHOTOSYNTHESIS: COMPANY FOOTPRINT 67
TABLE 37 COMPETITIVE BENCHMARKING: DETAILED LIST OF KEY PLAYERS 67
9.6 COMPANY PRODUCT COVERAGE 68
TABLE 38 ARTIFICIAL PHOTOSYNTHESIS: COMPANY PRODUCT COVERAGE 68
10 COMPANY PROFILES 69
(Business overview, Products offered, Recent Developments, MNM view)*
10.1 ORIGINAL EQUIPMENT MANUFACTURERS 69
10.1.1 ENGIE 69
TABLE 39 ENGIE: BUSINESS OVERVIEW 69
FIGURE 17 ENGIE: COMPANY SNAPSHOT 2020 70
TABLE 40 ENGIE: DEALS 70
10.1.2 PANASONIC CORPORATION 72
TABLE 41 PANASONIC CORPORATION: BUSINESS OVERVIEW 72
FIGURE 18 PANASONIC CORPORATION: COMPANY SNAPSHOT 2020 73
TABLE 42 PANASONIC CORPORATION: OTHERS 73
10.1.3 FUJITSU 75
TABLE 43 FUJITSU: BUSINESS OVERVIEW 75
FIGURE 19 FUJITSU: COMPANY SNAPSHOT 2020 76
TABLE 44 FUJITSU: DEALS 76
10.1.4 MITSUBISHI CHEMICAL CORPORATION 78
TABLE 45 MITSUBISHI CHEMICAL CORPORATION: BUSINESS OVERVIEW 78
TABLE 46 MITSUBISHI CHEMICAL CORPORATION: DEALS 78
10.1.5 TOSHIBA CORPORATION 79
TABLE 47 TOSHIBA CORPORATION: BUSINESS OVERVIEW 79
FIGURE 20 TOSHIBA CORPORATION: COMPANY SNAPSHOT 2020 80
TABLE 48 TOSHIBA CORPORATION: OTHERS 80
10.1.6 TOYOTA CENTRAL R&D LABS., INC. 81
TABLE 49 TOYOTA CENTRAL R&D LABS., INC.: BUSINESS OVERVIEW 81
TABLE 50 TOYOTA CENTRAL R&D LABS., INC.: OTHERS 81
10.1.7 SIEMENS ENERGY 82
TABLE 51 SIEMENS ENERGY: BUSINESS OVERVIEW 82
FIGURE 21 SIEMENS ENERGY: COMPANY SNAPSHOT 2020 83
TABLE 52 SIEMENS ENERGY: DEALS 83
10.1.8 FUJIFILM CORPORATION 85
TABLE 53 FUJIFILM CORPORATION: BUSINESS OVERVIEW 85
TABLE 54 FUJIFILM CORPORATION: DEALS 85
10.1.9 TWELVE (FORMERLY KNOWN AS, OPUS 12) 86
TABLE 55 TWELVE (FORMERLY KNOWN AS, OPUS 12): BUSINESS OVERVIEW 86
TABLE 56 TWELVE (FORMERLY KNOWN AS, OPUS 12): DEALS 86
10.1.10 EVONIK INDUSTRIES AG 88
TABLE 57 EVONIK INDUSTRIES AG: BUSINESS OVERVIEW 88
FIGURE 22 EVONIK INDUSTRIES AG: COMPANY SNAPSHOT 2020 89
TABLE 58 EVONIK INDUSTRIES AG: OTHERS 89
10.2 R&D INSTITUTES 91
10.2.1 BERKELEY LAB 91
TABLE 59 BERKELEY LAB: OVERVIEW 91
TABLE 60 BERKELEY LAB: DEALS 91
10.2.2 DEUTSCHE AKADEMIE DER NATURFORSCHER LEOPOLDINA 93
TABLE 61 DEUTSCHE AKADEMIE DER NATURFORSCHER LEOPOLDINA: OVERVIEW 93
TABLE 62 DEUTSCHE AKADEMIE DER NATURFORSCHER LEOPOLDINA: OTHERS 93
10.2.3 INDIAN INSTITUTE OF SCIENCE(IISC) 94
TABLE 63 INDIAN INSTITUTE OF SCIENCE (IISC): OVERVIEW 94
10.2.4 CENTER FOR HYBRID APPROACHES IN SOLAR ENERGY TO LIQUID
FUELS (CHASE) 95
TABLE 64 CENTER FOR HYBRID APPROACHES IN SOLAR ENERGY TO LIQUID FUELS (CHASE): OVERVIEW 95
TABLE 65 CENTER FOR HYBRID APPROACHES IN SOLAR ENERGY TO LIQUID FUELS (CHASE): DEALS 95
10.2.5 ICIQ 96
TABLE 66 ICIQ: OVERVIEW 96
10.2.6 NEW ENERGY AND INDUSTRIAL TECHNOLOGY DEVELOPMENT ORGANIZATION 97
TABLE 67 NEW ENERGY AND INDUSTRIAL TECHNOLOGY DEVELOPMENT ORGANIZATION: OVERVIEW 97
TABLE 68 NEW ENERGY AND INDUSTRIAL TECHNOLOGY DEVELOPMENT ORGANIZATION: DEALS 97
10.2.7 UNIVERSITY OF TORONTO 98
10.2.8 THE UNIVERSITY OF PAU AND PAYS DE L’ADOUR 99
10.2.9 UNIVERSITY OF BOLOGNA 100
*Details on Business overview, Products offered, Recent Developments, MNM view might not be captured in case of unlisted companies.
11 APPENDIX 101
11.1 INSIGHTS OF INDUSTRY EXPERTS 101
11.2 DISCUSSION GUIDE 102
11.3 KNOWLEDGE STORE: MARKETSANDMARKETS’ SUBSCRIPTION PORTAL 105
11.4 AVAILABLE CUSTOMIZATIONS 107
11.5 RELATED REPORTS 107
11.6 AUTHOR DETAILS 108
*** 免責事項 ***
https://www.globalresearch.co.jp/disclaimer/