1. 方法論と範囲
1.1. 調査方法
1.2. 調査目的と調査範囲
2. 定義と概要
3. エグゼクティブ・サマリー
3.1. 技術別スニペット
3.2. タイプ別スニペット
3.3. 用途別スニペット
3.4. エンドユーザー別スニペット
3.5. 地域別スニペット
4. ダイナミクス
4.1. 影響要因
4.1.1. 推進要因
4.1.1.1. 多様な産業にわたる技術革新と需要
4.1.1.2. 市場成長を牽引するカスタマイズと持続可能性
4.1.2. 阻害要因
4.1.2.1. 高い生産コストとメンテナンスコスト
4.1.3. 機会
4.1.4. 影響分析
5. 産業分析
5.1. ポーターのファイブフォース分析
5.2. サプライチェーン分析
5.3. 価格分析
5.4. 規制分析
5.5. ロシア・ウクライナ戦争の影響分析
5.6. DMI意見
6. 技術別
6.1. はじめに
6.1.1. 市場規模分析と前年比成長率分析(%), 技術別
6.1.2. 市場魅力度指数、技術別
6.2. インクジェット印刷
6.2.1. はじめに
6.2.1.1. 市場規模分析と前年比成長率分析(%)
6.2.2. スクリーン印刷
6.2.3. グラビア印刷
6.2.4. フレキソ印刷
6.2.5. その他
7. タイプ別
7.1. はじめに
7.1.1. 市場規模分析および前年比成長率分析(%), タイプ別
7.1.2. 市場魅力度指数(タイプ別
7.2. アンテナ
7.2.1. はじめに
7.2.2. 市場規模分析と前年比成長率分析(%)
7.3. センサー
7.4. プリント基板
7.5. MID
7.6. その他
8. 用途別
8.1. 導入
8.1.1. 用途別市場規模分析および前年比成長率分析(%)
8.1.2. 市場魅力度指数、用途別
8.2. ディスプレイ
8.2.1. はじめに
8.2.2. 市場規模分析と前年比成長率分析(%)
8.3. 太陽光発電
8.4. RFID
8.5. その他
9. エンドユーザー別
9.1. はじめに
9.1.1. 市場規模分析および前年比成長率分析(%), エンドユーザー別
9.1.2. 市場魅力度指数、エンドユーザー別
9.2. 航空宇宙・防衛*市場
9.2.1. はじめに
9.2.2. 市場規模分析と前年比成長率分析(%)
9.3. コンシューマーエレクトロニクス
9.4. 医療
9.5. 自動車
9.6. 電気通信
9.7. その他
10. 持続可能性分析
10.1. 環境分析
10.2. 経済分析
10.3. ガバナンス分析
11. 地域別
11.1. はじめに
11.1.1. 地域別市場規模分析および前年比成長率分析(%)
11.1.2. 市場魅力度指数、地域別
11.2. 北米
11.2.1. 序論
11.2.2. 主な地域別ダイナミクス
11.2.3. 市場規模分析および前年比成長率分析(%), 技術別
11.2.4. 市場規模分析とYoY成長率分析(%)、タイプ別
11.2.5. 市場規模分析および前年比成長率分析(%), アプリケーション別
11.2.6. 市場規模分析および前年比成長率分析 (%)、エンドユーザー別
11.2.7. 市場規模分析および前年比成長率分析(%)、国別
11.2.7.1. 米国
11.2.7.2. カナダ
11.2.7.3. メキシコ
11.3. ヨーロッパ
11.3.1. はじめに
11.3.2. 主な地域別動向
11.3.3. 市場規模分析および前年比成長率分析(%), 技術別
11.3.4. 市場規模分析とYoY成長率分析(%)、タイプ別
11.3.5. 市場規模分析およびYoY成長率分析(%)、用途別
11.3.6. 市場規模分析および前年比成長率分析 (%)、エンドユーザー別
11.3.7. 市場規模分析および前年比成長率分析(%)、国別
11.3.7.1. ドイツ
11.3.7.2. イギリス
11.3.7.3. フランス
11.3.7.4. イタリア
11.3.7.5. スペイン
11.3.7.6. その他のヨーロッパ
11.3.8. 南米
11.3.9. はじめに
11.3.10. 地域別主要市場
11.3.11. 市場規模分析および前年比成長率分析(%), 技術別
11.3.12. 市場規模分析とYoY成長率分析(%)、タイプ別
11.3.13. 市場規模分析および前年比成長率分析(%), アプリケーション別
11.3.14. 市場規模分析および前年比成長率分析 (%)、エンドユーザー別
11.3.15. 市場規模分析および前年比成長率分析(%)、国別
11.3.15.1. ブラジル
11.3.15.2. アルゼンチン
11.3.15.3. その他の南米諸国
11.4. アジア太平洋
11.4.1. はじめに
11.4.2. 主な地域別ダイナミクス
11.4.3. 市場規模分析および前年比成長率分析(%), 技術別
11.4.4. 市場規模分析とYoY成長率分析(%)、タイプ別
11.4.5. 市場規模分析とYoY成長率分析(%)、アプリケーション別
11.4.6. 市場規模分析および前年比成長率分析 (%)、エンドユーザー別
11.4.7. 市場規模分析および前年比成長率分析(%)、国別
11.4.7.1. 中国
11.4.7.2. インド
11.4.7.3. 日本
11.4.7.4. オーストラリア
11.4.7.5. その他のアジア太平洋地域
11.5. 中東・アフリカ
11.5.1. 序論
11.5.2. 主な地域別ダイナミクス
11.5.3. 市場規模分析および前年比成長率分析(%), 技術別
11.5.4. 市場規模分析とYoY成長率分析(%)、タイプ別
11.5.5. 市場規模分析および前年比成長率分析(%), アプリケーション別
11.5.6. 市場規模分析および前年比成長率分析 (%)、エンドユーザー別
12. 競合情勢
12.1. 競争シナリオ
12.2. 市場ポジショニング/シェア分析
12.3. M&A分析
13. 企業プロフィール
13.1. LG Chem.*
13.1.1. 会社概要
13.1.2. 製品ポートフォリオと内容
13.1.3. 財務概要
13.1.4. 主な展開
13.2. HP Development Company, L.P.
13.3. DuPont
13.4. Molex, LLC
13.5. Nissha Co. Ltd.
13.6. BASF
13.7. Nova Centrix
13.8. E Ink Holdings
13.9. The Cubbison Company
13.10. Pasternack Enterprises Inc.
リストは網羅的ではありません
14. 付録
14.1. 当社とサービスについて
14.2. お問い合わせ
Global 3D Printed Electronics Market reached US$ 9.35 billion in 2023 and is expected to reach US$ 28.07 billion by 2031, growing with a CAGR of 14.73% during the forecast period 2024-2031.
The market for 3D-printed electronics is quickly growing as industries look for efficient, personalized options for making electronic components. Utilizing additive manufacturing technology, 3D-printed electronics enable the creation of complex circuitry and components directly onto substrates, reducing material waste and production time. This method is in line with the increasing need for small, adaptable and lightweight electronic gadgets in industries like consumer electronics, automotive and aerospace.
The market's growth is fueled by increasing investments in research and development for advanced materials and printing techniques, which enhance conductivity and durability. Regulatory standards, such as those established by the European Union for electronic manufacturing and environmental compliance, are aiding market growth by setting guidelines that guarantee product quality and safety, encouraging the adoption of 3D-printed electronics in different uses.
Asia-Pacific is the fastest-growing market for 3D-printed electronics, driven by technological advancements in countries such as China, Japan and South Korea. The automotive and electronics manufacturing sectors in these countries are leveraging 3D printing for rapid prototyping and mass customization. Furthermore, the technology investments in the Asia-Pacific region are expected to exceed US$ 1.5 trillion annually by 2025, with a significant portion allocated to the electronics and manufacturing sectors. This economic environment supports the rapid adoption of 3D-printed electronics technologies, driving the region’s leadership in this market.
Dynamics
Technological Innovations and Demand Across Diverse Industries
The 3D-printed electronics market is expanding rapidly, driven by technological innovations and increasing adoption across sectors such as automotive, aerospace, healthcare and consumer electronics. Sophisticated 3D printing methods enable the production of intricate electronic parts with personalized designs, providing versatility and decreasing production turnaround times. This is essential for industries requiring rapid prototyping and low-volume production.
Moreover, there is a growing trend in the use of 3D-printed sensors and circuits in medical devices and wearable technology to meet the need for smaller and more effective components. The increasing investment in research and development (R&D) is a major factor affecting the market growth. For instance, global R&D spending is projected to grow by approximately 3.6% in 2024, reaching over US$ 2.6 trillion, with a substantial share allocated to electronics and manufacturing innovation. It supports progress in 3D printing materials and technologies, allowing industries to adapt to changing consumer needs and regulatory requirements in electronics.
Customization and Sustainability Driving Market Growth
The 3D-printed electronics market is witnessing substantial growth due to the increasing demand for customization and sustainable manufacturing practices. The capacity to create custom electronic components for specific uses is extremely important in the automotive and aerospace sectors, where efficient, lightweight designs are crucial. This capability also supports the production of next-generation devices, such as flexible and wearable electronics, enhancing user experience and functionality.
Similarly, the shift towards sustainable manufacturing has also fueled market growth, as global efforts to reduce electronic waste intensify. According to the United Nations Institute for Training and Research (UNITAR), 62 million tonnes (Mt) of e-waste was produced in 2022, up 82% from 2010. The 3D-printed electronics market is positioned to address this issue through additive manufacturing techniques that minimize material waste and support circular economy models, making it an increasingly attractive solution for industries striving for eco-friendly innovation.
High Production and Maintenance Costs
The cost of 3D printing equipment varies significantly, with prices for industrial-grade printers ranging between US$ 50,000 and US$ 500,000, depending on the technology and capabilities. The instability in prices is aggravated by supply chain interruptions and the need for high-tech materials such as conductive inks and substrates. The price for a liter of conductive screen printing ink is between US$ 500 and US$ 1500 per liter, greatly affecting the total manufacturing expenses.
Furthermore, annual maintenance expenses can increase significantly, as industrial printers often necessitate service contracts and special materials which are more expensive than other options available in the market. The financial responsibility is increased by the need for specific instruction to effectively use advanced equipment, leading to a higher initial investment for companies interested in incorporating 3D printing technologies
Segment Analysis
The global 3D printed electronics market is segmented based on technology, type, application, end-user and region.
Necessity For Lightweight, Effective Parts From Aerospace Sector
The Aerospace & Defense sector is experiencing an increase in requests for 3D-printed electronics due to developments in additive manufacturing technology and the necessity for lightweight, effective parts. 3D-printed electronics enable the production of complex, customized parts with integrated circuits, reducing the weight of aircraft and defense equipment while enhancing performance. The industry experiences advantages in quicker prototyping and reduced production expenses when compared to conventional manufacturing techniques, leading to increased usage among aerospace and defense manufacturers.
Total global military expenditure reached US$ 2443 billion in 2023, an increase of 6.8% in real terms from 2022, reflecting a focus on modernization and technological innovation. Countries such as the US, with a defense budget of approximately US$ 841.4 billion in 2024 and China, spending around US$ 236 billion, are investing in advanced manufacturing solutions, including 3D-printed electronics, to optimize capabilities.
Geographical Penetration
North America’s Favorable Environment for 3D Printing Technology
The North American region is expected to lead the 3D-printed electronics market, driven by the rapid adoption across sectors like aerospace, automotive, consumer electronics and healthcare in the United States and Canada. Tax benefits and funding for research and development provided by the government help to enhance the growth and acceptance of 3D printing technologies within the electronics manufacturing sector.
The automotive sector, particularly in US, has seen a surge in using 3D-printed components, with a significant increase in adoption from 2022 to 2023. Furthermore, the aerospace sector gains advantages from collaborations with groups such as NASA, incorporating 3D-printed electronics into advancements in satellites and spacecraft. In Canada, the healthcare sector increasingly utilizes 3D-printed medical devices, with projected market growth.
Moreover, US Department of Energy announced US$ 22 million to 12 state-run programs to accelerate smart manufacturing and technology development initiatives, fostering a supportive environment for 3D-printed electronics. The regional GDP growth of rate in 2023 further bolsters investment and innovation, positioning North America as a leading hub in the market.
Competitive Landscape
The major global players in the market include LG Chem, HP Development Company, L.P., DuPont, Molex, LLC, Nissha Co., Ltd., BASF, Nova Centrix, E Ink Holdings, The Cubbison Company and Pasternack Enterprises Inc.
Sustainability Analysis
The 3D-printed electronics market is increasingly integrating sustainability into its technological advancements, driven by demand from sectors such as automotive, aerospace and consumer electronics for eco-friendly manufacturing solutions. Companies are concentrating on advancing 3D printing technologies that cut down on waste and energy usage, by worldwide carbon reduction targets. For instance, Nano Dimension offers inkjet-based 3D printing systems designed to optimize material usage while minimizing the environmental impact of production.
According to the Global Electronics Sustainability Organization (GESO), there is a growing shift towards using biodegradable and recyclable materials in 3D-printed electronics as companies aim to comply with sustainability regulations. GESO emphasizes the importance of 3D-printed electronics in reducing material waste and energy usage, especially in the automotive and aerospace sectors, where there is a need for lightweight and effective parts. Governments are also incentivizing eco-friendly manufacturing with tax benefits and grants, supporting the adoption of sustainable 3D printing technologies.
Russia-Ukraine War Impact
The ongoing Russia-Ukraine conflict has significantly influenced the 3D-printed electronics industry, particularly in Europe. With the changing geopolitical landscape, there is an increasing need for cutting-edge manufacturing technologies and 3D printing is becoming a crucial part of the supply chain. This increase is driven by the necessity for rapid prototyping and production of essential components, particularly for defense applications.
Furthermore, with the goal of reducing supply chain disruptions from the war, companies are increasingly interested in producing goods locally. This shift is expected to lead to a 20% increase in investment in 3D printing technologies within the region over the next five years, enabling manufacturers to produce components closer to their operational bases and reduce reliance on external suppliers.
By Technology
• Inkjet Printing
• Screen Printing
• Gravure Printing
• Flexographic Printing
• Others
By Type
• Antenna
• Sensor
• PCB
• MID
• Others
By Application
• Displays
• Photovoltaic
• RFID
• Others
By End-User
• Aerospace & Defense
• Consumer Electronics
• Medical
• Automotive
• Telecom
• Others
Region
• North America
o US
o Canada
o Mexico
• Europe
o Germany
o UK
o France
o Italy
o Spain
o Rest of Europe
• South America
o Brazil
o Argentina
o Rest of South America
• Asia-Pacific
o China
o India
o Japan
o Australia
o Rest of Asia-Pacific
• Middle East and Africa
Key Developments
• In October 2024, Brewer Science presented at the InterPACK 2024 conference, highlighting the importance of innovative materials for additive electronics. They emphasized the need for low-loss dielectric materials to enhance the performance of miniaturized electronic devices. This innovation aims to strengthen the domestic supply chain in US and improve manufacturing processes in electronics.
• In April 2022, E-Ink launched the E-Ink Kaleido 3, which enhances eReaders and eNotes with improved display capabilities, featuring 16 levels of greyscale and a color palette of 4096 colors. This new version offers a 30% increase in color saturation over the E-Ink Kaleido Plus, reflecting the growing trend of integrating 3D printing technologies into consumer electronics for enhanced functionality and performance.
• In January 2022, Nano Dimension announced its acquisition of UK-based company Inkjet Systems Ltd. for approximately US$ 18.1 million. This strategic move aims to enhance Nano Dimension's capabilities in the 3D printing hardware sector, particularly in advancing its inkjet technology for electronics.
Why Purchase the Report?
• To visualize the global 3D printed electronics market segmentation based on technology, type, application, end-user and region.
• Identify commercial opportunities by analyzing trends and co-development.
• Excel spreadsheet containing a comprehensive dataset of the 3D printed electronics market, covering all levels of segmentation.
• PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
• Product mapping available as excel consisting of key products of all the major players.
The global 3D printed electronics market report would provide approximately 70 tables, 70 figures and 203 pages.
Target Audience 2024
• Manufacturers/ Buyers
• Industry Investors/Investment Bankers
• Research Professionals
• Emerging Companies
1. Methodology and Scope
1.1. Research Methodology
1.2. Research Objective and Scope of the Report
2. Definition and Overview
3. Executive Summary
3.1. Snippet by Technology
3.2. Snippet by Type
3.3. Snippet by Application
3.4. Snippet by End-User
3.5. Snippet by Region
4. Dynamics
4.1. Impacting Factors
4.1.1. Drivers
4.1.1.1. Technological Innovations and Demand Across Diverse Industries
4.1.1.2. Customization and Sustainability Driving Market Growth
4.1.2. Restraints
4.1.2.1. High Production and Maintenance Costs
4.1.3. Opportunity
4.1.4. Impact Analysis
5. Industry Analysis
5.1. Porter's Five Force Analysis
5.2. Supply Chain Analysis
5.3. Pricing Analysis
5.4. Regulatory Analysis
5.5. Russia-Ukraine War Impact Analysis
5.6. DMI Opinion
6. By Technology
6.1. Introduction
6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
6.1.2. Market Attractiveness Index, By Technology
6.2. Inkjet Printing*
6.2.1. Introduction
6.2.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%)
6.2.2. Screen Printing
6.2.3. Gravure Printing
6.2.4. Flexographic Printing
6.2.5. Others
7. By Type
7.1. Introduction
7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
7.1.2. Market Attractiveness Index, By Type
7.2. Antenna*
7.2.1. Introduction
7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
7.3. Sensor
7.4. PCB
7.5. MID
7.6. Others
8. By Application
8.1. Introduction
8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
8.1.2. Market Attractiveness Index, By Application
8.2. Displays*
8.2.1. Introduction
8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
8.3. Photovoltaic
8.4. RFID
8.5. Others
9. By End-User
9.1. Introduction
9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
9.1.2. Market Attractiveness Index, By End-User
9.2. Aerospace & Defense*
9.2.1. Introduction
9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
9.3. Consumer Electronics
9.4. Medical
9.5. Automotive
9.6. Telecom
9.7. Others
10. Sustainability Analysis
10.1. Environmental Analysis
10.2. Economic Analysis
10.3. Governance Analysis
11. By Region
11.1. Introduction
11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
11.1.2. Market Attractiveness Index, By Region
11.2. North America
11.2.1. Introduction
11.2.2. Key Region-Specific Dynamics
11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
11.2.7.1. US
11.2.7.2. Canada
11.2.7.3. Mexico
11.3. Europe
11.3.1. Introduction
11.3.2. Key Region-Specific Dynamics
11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
11.3.7.1. Germany
11.3.7.2. UK
11.3.7.3. France
11.3.7.4. Italy
11.3.7.5. Spain
11.3.7.6. Rest of Europe
11.3.8. South America
11.3.9. Introduction
11.3.10. Key Region-Specific Dynamics
11.3.11. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
11.3.12. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
11.3.13. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
11.3.14. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
11.3.15. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
11.3.15.1. Brazil
11.3.15.2. Argentina
11.3.15.3. Rest of South America
11.4. Asia-Pacific
11.4.1. Introduction
11.4.2. Key Region-Specific Dynamics
11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
11.4.7.1. China
11.4.7.2. India
11.4.7.3. Japan
11.4.7.4. Australia
11.4.7.5. Rest of Asia-Pacific
11.5. Middle East and Africa
11.5.1. Introduction
11.5.2. Key Region-Specific Dynamics
11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
12. Competitive Landscape
12.1. Competitive Scenario
12.2. Market Positioning/Share Analysis
12.3. Mergers and Acquisitions Analysis
13. Company Profiles
13.1. LG Chem.*
13.1.1. Company Overview
13.1.2. Product Portfolio and Description
13.1.3. Financial Overview
13.1.4. Key Developments
13.2. HP Development Company, L.P.
13.3. DuPont
13.4. Molex, LLC
13.5. Nissha Co. Ltd.
13.6. BASF
13.7. Nova Centrix
13.8. E Ink Holdings
13.9. The Cubbison Company
13.10. Pasternack Enterprises Inc.
LIST NOT EXHAUSTIVE
14. Appendix
14.1. About Us and Services
14.2. Contact Us
*** 3Dプリンテッドエレクトロニクスの世界市場に関するよくある質問(FAQ) ***
・3Dプリンテッドエレクトロニクスの世界市場規模は?
→DataM Intelligence社は2023年の3Dプリンテッドエレクトロニクスの世界市場規模を93.5億米ドルと推定しています。
・3Dプリンテッドエレクトロニクスの世界市場予測は?
→DataM Intelligence社は2031年の3Dプリンテッドエレクトロニクスの世界市場規模を280.7億米ドルと予測しています。
・3Dプリンテッドエレクトロニクス市場の成長率は?
→DataM Intelligence社は3Dプリンテッドエレクトロニクスの世界市場が2024年~2031年に年平均14.7%成長すると展望しています。
・世界の3Dプリンテッドエレクトロニクス市場における主要プレイヤーは?
→「LG Chem、HP Development Company, L.P.、DuPont、Molex, LLC、Nissha Co.Ltd.、BASF、Nova Centrix、E Ink Holdings、The Cubbison Company、Pasternack Enterprises Inc.など ...」を3Dプリンテッドエレクトロニクス市場のグローバル主要プレイヤーとして判断しています。
※上記FAQの市場規模、市場予測、成長率、主要企業に関する情報は本レポートの概要を作成した時点での情報であり、最終レポートの情報と少し異なる場合があります。
*** 免責事項 ***
https://www.globalresearch.co.jp/disclaimer/